3.233 \(\int \cot (c+b x) \sin (a+b x) \, dx\)

Optimal. Leaf size=29 \[ \frac{\sin (a+b x)}{b}-\frac{\sin (a-c) \tanh ^{-1}(\cos (b x+c))}{b} \]

[Out]

-((ArcTanh[Cos[c + b*x]]*Sin[a - c])/b) + Sin[a + b*x]/b

________________________________________________________________________________________

Rubi [A]  time = 0.0155587, antiderivative size = 29, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {4578, 2637, 3770} \[ \frac{\sin (a+b x)}{b}-\frac{\sin (a-c) \tanh ^{-1}(\cos (b x+c))}{b} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + b*x]*Sin[a + b*x],x]

[Out]

-((ArcTanh[Cos[c + b*x]]*Sin[a - c])/b) + Sin[a + b*x]/b

Rule 4578

Int[Cot[w_]^(n_.)*Sin[v_], x_Symbol] :> Int[Cos[v]*Cot[w]^(n - 1), x] + Dist[Sin[v - w], Int[Csc[w]*Cot[w]^(n
- 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot (c+b x) \sin (a+b x) \, dx &=\sin (a-c) \int \csc (c+b x) \, dx+\int \cos (a+b x) \, dx\\ &=-\frac{\tanh ^{-1}(\cos (c+b x)) \sin (a-c)}{b}+\frac{\sin (a+b x)}{b}\\ \end{align*}

Mathematica [C]  time = 0.0525759, size = 93, normalized size = 3.21 \[ -\frac{2 i \sin (a-c) \tan ^{-1}\left (\frac{(\cos (c)-i \sin (c)) \left (\cos (c) \cos \left (\frac{b x}{2}\right )-\sin (c) \sin \left (\frac{b x}{2}\right )\right )}{\sin (c) \cos \left (\frac{b x}{2}\right )+i \cos (c) \cos \left (\frac{b x}{2}\right )}\right )}{b}+\frac{\sin (a) \cos (b x)}{b}+\frac{\cos (a) \sin (b x)}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + b*x]*Sin[a + b*x],x]

[Out]

(Cos[b*x]*Sin[a])/b - ((2*I)*ArcTan[((Cos[c] - I*Sin[c])*(Cos[c]*Cos[(b*x)/2] - Sin[c]*Sin[(b*x)/2]))/(I*Cos[c
]*Cos[(b*x)/2] + Cos[(b*x)/2]*Sin[c])]*Sin[a - c])/b + (Cos[a]*Sin[b*x])/b

________________________________________________________________________________________

Maple [C]  time = 0.085, size = 95, normalized size = 3.3 \begin{align*}{\frac{-{\frac{i}{2}}{{\rm e}^{i \left ( bx+a \right ) }}}{b}}+{\frac{{\frac{i}{2}}{{\rm e}^{-i \left ( bx+a \right ) }}}{b}}+{\frac{\ln \left ({{\rm e}^{i \left ( bx+a \right ) }}-{{\rm e}^{i \left ( a-c \right ) }} \right ) \sin \left ( a-c \right ) }{b}}-{\frac{\ln \left ({{\rm e}^{i \left ( bx+a \right ) }}+{{\rm e}^{i \left ( a-c \right ) }} \right ) \sin \left ( a-c \right ) }{b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(b*x+c)*sin(b*x+a),x)

[Out]

-1/2*I*exp(I*(b*x+a))/b+1/2*I/b*exp(-I*(b*x+a))+1/b*ln(exp(I*(b*x+a))-exp(I*(a-c)))*sin(a-c)-1/b*ln(exp(I*(b*x
+a))+exp(I*(a-c)))*sin(a-c)

________________________________________________________________________________________

Maxima [B]  time = 1.16384, size = 142, normalized size = 4.9 \begin{align*} \frac{\log \left (\cos \left (b x\right )^{2} + 2 \, \cos \left (b x\right ) \cos \left (c\right ) + \cos \left (c\right )^{2} + \sin \left (b x\right )^{2} - 2 \, \sin \left (b x\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}\right ) \sin \left (-a + c\right ) - \log \left (\cos \left (b x\right )^{2} - 2 \, \cos \left (b x\right ) \cos \left (c\right ) + \cos \left (c\right )^{2} + \sin \left (b x\right )^{2} + 2 \, \sin \left (b x\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}\right ) \sin \left (-a + c\right ) + 2 \, \sin \left (b x + a\right )}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(b*x+c)*sin(b*x+a),x, algorithm="maxima")

[Out]

1/2*(log(cos(b*x)^2 + 2*cos(b*x)*cos(c) + cos(c)^2 + sin(b*x)^2 - 2*sin(b*x)*sin(c) + sin(c)^2)*sin(-a + c) -
log(cos(b*x)^2 - 2*cos(b*x)*cos(c) + cos(c)^2 + sin(b*x)^2 + 2*sin(b*x)*sin(c) + sin(c)^2)*sin(-a + c) + 2*sin
(b*x + a))/b

________________________________________________________________________________________

Fricas [B]  time = 0.53109, size = 531, normalized size = 18.31 \begin{align*} \frac{\frac{\sqrt{2} \log \left (\frac{2 \, \cos \left (b x + a\right )^{2} \cos \left (-2 \, a + 2 \, c\right ) - 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) \sin \left (-2 \, a + 2 \, c\right ) + \frac{2 \, \sqrt{2}{\left ({\left (\cos \left (-2 \, a + 2 \, c\right ) + 1\right )} \cos \left (b x + a\right ) - \sin \left (b x + a\right ) \sin \left (-2 \, a + 2 \, c\right )\right )}}{\sqrt{\cos \left (-2 \, a + 2 \, c\right ) + 1}} - \cos \left (-2 \, a + 2 \, c\right ) + 3}{2 \, \cos \left (b x + a\right )^{2} \cos \left (-2 \, a + 2 \, c\right ) - 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) \sin \left (-2 \, a + 2 \, c\right ) - \cos \left (-2 \, a + 2 \, c\right ) - 1}\right ) \sin \left (-2 \, a + 2 \, c\right )}{\sqrt{\cos \left (-2 \, a + 2 \, c\right ) + 1}} + 4 \, \sin \left (b x + a\right )}{4 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(b*x+c)*sin(b*x+a),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*log((2*cos(b*x + a)^2*cos(-2*a + 2*c) - 2*cos(b*x + a)*sin(b*x + a)*sin(-2*a + 2*c) + 2*sqrt(2)*(
(cos(-2*a + 2*c) + 1)*cos(b*x + a) - sin(b*x + a)*sin(-2*a + 2*c))/sqrt(cos(-2*a + 2*c) + 1) - cos(-2*a + 2*c)
 + 3)/(2*cos(b*x + a)^2*cos(-2*a + 2*c) - 2*cos(b*x + a)*sin(b*x + a)*sin(-2*a + 2*c) - cos(-2*a + 2*c) - 1))*
sin(-2*a + 2*c)/sqrt(cos(-2*a + 2*c) + 1) + 4*sin(b*x + a))/b

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sin{\left (a + b x \right )} \cot{\left (b x + c \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(b*x+c)*sin(b*x+a),x)

[Out]

Integral(sin(a + b*x)*cot(b*x + c), x)

________________________________________________________________________________________

Giac [B]  time = 1.19333, size = 305, normalized size = 10.52 \begin{align*} -\frac{2 \,{\left (\frac{{\left (\tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right )^{2} - \tan \left (\frac{1}{2} \, a\right ) \tan \left (\frac{1}{2} \, c\right )^{3} + \tan \left (\frac{1}{2} \, a\right ) \tan \left (\frac{1}{2} \, c\right ) - \tan \left (\frac{1}{2} \, c\right )^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, b x\right ) \tan \left (\frac{1}{2} \, c\right ) - 1 \right |}\right )}{\tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right )^{3} + \tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right ) + \tan \left (\frac{1}{2} \, c\right )^{3} + \tan \left (\frac{1}{2} \, c\right )} - \frac{{\left (\tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right ) - \tan \left (\frac{1}{2} \, a\right ) \tan \left (\frac{1}{2} \, c\right )^{2} + \tan \left (\frac{1}{2} \, a\right ) - \tan \left (\frac{1}{2} \, c\right )\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, b x\right ) + \tan \left (\frac{1}{2} \, c\right ) \right |}\right )}{\tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right )^{2} + \tan \left (\frac{1}{2} \, a\right )^{2} + \tan \left (\frac{1}{2} \, c\right )^{2} + 1} + \frac{\tan \left (\frac{1}{2} \, b x\right ) \tan \left (\frac{1}{2} \, a\right )^{2} - \tan \left (\frac{1}{2} \, b x\right ) - 2 \, \tan \left (\frac{1}{2} \, a\right )}{{\left (\tan \left (\frac{1}{2} \, b x\right )^{2} + 1\right )}{\left (\tan \left (\frac{1}{2} \, a\right )^{2} + 1\right )}}\right )}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(b*x+c)*sin(b*x+a),x, algorithm="giac")

[Out]

-2*((tan(1/2*a)^2*tan(1/2*c)^2 - tan(1/2*a)*tan(1/2*c)^3 + tan(1/2*a)*tan(1/2*c) - tan(1/2*c)^2)*log(abs(tan(1
/2*b*x)*tan(1/2*c) - 1))/(tan(1/2*a)^2*tan(1/2*c)^3 + tan(1/2*a)^2*tan(1/2*c) + tan(1/2*c)^3 + tan(1/2*c)) - (
tan(1/2*a)^2*tan(1/2*c) - tan(1/2*a)*tan(1/2*c)^2 + tan(1/2*a) - tan(1/2*c))*log(abs(tan(1/2*b*x) + tan(1/2*c)
))/(tan(1/2*a)^2*tan(1/2*c)^2 + tan(1/2*a)^2 + tan(1/2*c)^2 + 1) + (tan(1/2*b*x)*tan(1/2*a)^2 - tan(1/2*b*x) -
 2*tan(1/2*a))/((tan(1/2*b*x)^2 + 1)*(tan(1/2*a)^2 + 1)))/b